2021/TDC(CBCS)/EVEN/SEM/ PHSHCC-602T/097

TDC (CBCS) Even Semester Exam., September—2021

PHYSICS

(6th Semester)

Course No.: PHSHCC-602T

(Statistical Mechanics)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any ten questions:

2×10=20

- 1. What is phase space?
- 2. Define most probable microstate.
- 3. What is partition function?
- 4. Define the term 'thermodynamic probability'.

22J**/93**

(Turn Over)

家族的复数电影 经收益 人名德德 医多种

two commences and spine in the

- 5. State two properties of thermal radiation.
- 6. State Kirchhoff's law of radiation.
- **7.** What do you understand by radiation pressure?
- 8. What is ultraviolet catastrophe?
- 9. Explain Planck's quantum postulates.
- 10. Explain Stefan-Boltzmann law.
- 11. What do you understand by Wien's law of energy distribution?
- 12. Describe Rayleigh-Jeans law in brief.
- **13.** State two basic assumptions of Bose-Einstein statistics.
- 14. What do you mean by photon gas?
- 15. What is liquid helium?
- 16. Briefly explain Bose-Einstein condensation.
- 17. State two basic assumptions of Fermi-Dirac statistics.

22J/93

(3)

18.	What	is	electron	gas?	,		•	

- 19. Explain in brief about Fermi energy.
- 20. Discuss Chandrasekhar mass limit.

SECTION—B

Answer any five questions:

6×5=30

- 21. (a) Define and explain the terms 'macrostate' and 'microstate' with examples.
 - (b) State the law of equipartition of energy. 2
- **22.** (a) What is ensemble? Distinguish among microcanonical, canonical and grand canonical ensembles. 1+3=4
 - (b) Explain Gibbs' paradox in brief. 2
- 23. What is a black body? What is black-body radiation? Describe how has the idea of a black body been achieved in practice.

11/2+11/2+3=6

24. Explain the terms 'emissive power' and 'absorptive power'. Prove that at any temperature the ratio of emissive power to the absorptive power of a substance is constant and is equal to the emissive power of a perfectly black body.

1+1+4=6

(4)

25.	(a)	Discuss Planck's law of black body radiation.	3						
	(b)	Give the experimental verification of Planck's radiation law.	3						
26.	(a)	Starting from Planck's radiation law, deduce Wien's displacement law.	4						
,	(b)	Deduce Rayleigh-Jeans law from Planck's law.	2						
27.	dist	ive the expression for the most probable ribution of particles for a system obeying e-Einstein statistics.	6						
28.	dist	rting from Bose-Einstein energy ribution law, derive Planck's law of ck-body radiation.	6						
29.	dist	rive an expression for the probability stribution of particles governed by rmi-Dirac statistics.							
30.	(a)	Use Fermi-Dirac statistics to calculate the energy of free electrons inside a metal.	 5						
	(b)	Do electrons have zero energy at 0 K? If not, why?	1						
	ii.	* * * 2021/TDC(CBCS)/EVEN/SE	M/						