2021/TDC(CBCS)/EVEN/SEM/ PHSHCC-601T/096

TDC (CBCS) Even Semester Exam., September—2021

PHYSICS

(6th Semester)

Course No.: PHSHCC-601T

(Electromagnetic Theory)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any ten of the following questions: $2\times10=20$

- 1. Which of the Maxwell equations indicates the absence of magnetic monopoles?
- 2. Explain the physical significance of the equation $\nabla \cdot \vec{B} = 0$.
- 3. How has electromagnetism integrated the electric and magnetic phenomena?

(Turn Over)

(2)

- **4.** What is the physical significance of Poynting vector? What is its unit?
- **5.** What is dielectric constant? How is it related to the refractive index in case of dielectrics?
- **6.** Plasma is quasineutral. Justify the statement.
- 7. How do electromagnetic waves propagate?
- 8. Write some of the characteristics of plasma.
- 9. Write down the four electrodynamic boundary conditions.
- 10. What is reflectivity formula?
- 11. What are evanescent waves?
- **12.** State the laws of reflection of electromagnetic waves.
- 13. What is linear polarization?
- **14.** How is linear polarization different from circular and elliptical polarization?

(3)

- **15.** What is half-wave plate? Mention two of its uses.
- **16.** Mention some of the uses of Babinet compensator.
- 17. What do you mean by waveguide? Explain briefly.
- **18.** What is meant by phase change on reflection?
- 19. What is optical fibre? Mention some of its uses.
- **20.** Write down the condition of continuity at the interface for a waveguide.

SECTION—B

Answer any five of the following questions: $6 \times 5=30$

- 21. (a) Write the Maxwell's equations. Explain the physical significance of each equation.
 - (b) The average intensity of an EM wave is 10^9 W/m^2 in vacuum. Find the amplitudes of electric and magnetic field vectors \vec{E} and \vec{B} .

2

4

(4)

	22.	(a)	Define Poynting vector for EM waves. What does it represent?	3	
		(b)	Calculate the value of Poynting vector at the surface of the Sun; if the energy radiated per second by the Sun is 3.8×10^{26} J.	3	
	23.	(a)	What do you mean by 'skin depth'?	1	
		(b)	Find the expression of current density due to wave propagation in dilute plasmas and hence show that the current density and electric fields are 90° out of phase.	5	
	24.	(a)	What is isotropic dielectric medium?	1	
		(b)	Explain the propagation of EM waves in dielectric medium and hence find the corresponding equations.	5	
	25.	(a)	What is Fresnel reflection at interface formula?	2	
		(b)	What is reflectivity formula?	2	
		(c)	What is Brewster's law of polarization?	2	
22J /92 (Continu					

(5)

26.	(a)	What are meant by reflection and transmission coefficients?	2				
	(b)	How do you calculate transmission coefficient?	2				
	(c)	What is the sum of reflection and transmission coefficients?	1				
	(d)	Why is the coefficient of transmission greater than 1?	1				
27.	(a)	What are phase retardation plates?	2				
	(b)	Explain the function of quarter-wave plate in positive and negative crystals.	4				
28.	(a)	What are plane, elliptical and circularly polarized light?	3				
	(b)	Explain, how the production of plane, elliptical and circularly polarized light can be done.	3				
29.	(a) ·	What are phase velocity and group velocity of wave?	2				
	(b)	Find the relation between phase velocity and group velocity of wave.	4				
02.1/92							

(6)

30.	(a)	What is	numerical	aperture	of	optical	
	•	fibre?					2

(b) Find the phase and group velocity of an electron whose de Broglie wavelength is 1.2 Å. (Neglect the relativity effect.)

* * *