## 2021/TDC (CBCS)/EVEN/SEM/ MTMHCC-601T/126

## TDC (CBCS) Even Semester Exam., September—2021

**MATHEMATICS** 

(6th Semester)

Course No.: MTMHCC-601T

(Complex Analysis)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

#### SECTION-A

Answer any ten of the following questions: 2×10=20

- 1. Show that the statements  $Re\{z\} > 0$  and |z-1| < |z+1| are equivalent,  $z \in \mathbb{C}$ .
- 2. If the product of two complex numbers  $z_1$  and  $z_2$  is a non-zero real number, prove that there exists a real number  $\gamma$  such that

$$z_1 = \gamma \overline{z}_2$$

- 3. If  $z = Re^{i\theta}$ , find the value of  $|e^{iz}|$ .
- **4.** Find the locus of the point z = x + iy satisfying the equation

$$\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{3}$$

- 5. Write down the polar form of Cauchy-Riemann equations.
- **6.** Show that the function f(z) = xy + iy is everywhere continuous but not analytic.
- 7. Show that  $u = y^3 3x^2y$  is a harmonic function. Determine its harmonic conjugate.
- **8.** Show that the function  $f: \mathbb{C} \to \mathbb{R}$  defined by f(z) = |z| is nowhere differentiable.
- 9. Write the statement of Cauchy's theorem.
- 10. Define simply and multi-connected regions.
- 11. Evaluate

$$\int_C \frac{e^{2z}}{(z+1)^4} dz$$

where C is |z|=3.

(3)

12. Evaluate by Cauchy's integral formula

$$\int_C \frac{dz}{z(z-\pi i)}$$

where C is |z+3i|=1.

- 13. Define entire function with examples.
- 14. State Morera's theorem. Does this theorem applicable in a multi-connected region?
- 15. Does the series

$$z(1-z)+z^2(1-z)+z^3(1-z)+\cdots$$

converges for |z| < 1? Explain.

16. Under what conditions the series

$$\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$$

converges and diverges?

- 17. What is meromorphic function?
- **18.** Specify the nature of singularity at z = a of

$$f(z) = \frac{\cot \pi z}{(z-a)^2}$$

(4)

19. Find the poles of

$$\left(\frac{z+1}{z^2+1}\right)^2$$

20. Find the residues of

$$f(z) = \frac{e^z}{z^2(z^2 + 9)}$$

# SECTION—B

Answer any five of the following questions: 10×5=50

21. (a) Prove that

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$

interpret the result geometrically and hence deduce that

$$|z_{1} + \sqrt{z_{1}^{2} - z_{2}^{2}}| + |z_{1} - \sqrt{z_{1}^{2} - z_{2}^{2}}|$$

$$= |z_{1} + z_{2}| + |z_{1} - z_{2}|, z_{1}, z_{2} \in \mathbb{C}$$
 5

(b) Show that the origin and the points representing the roots of the equation  $z^2 + pz + q = 0$  form an equilateral triangle if  $p^2 = 3q$ .

## (5)

**22.** (a) Show that the equation of a straight line in the Argand plane can be put in the form

$$z\overline{b} + b\overline{z} + c = 0$$

where  $b \neq 0 \in \mathbb{C}$  and  $c \in \mathbb{R}$ .

5

(b) Find all circles in the complex plane which are orthogonal to

$$|z|=1$$
 and  $|z-1|=4$ 

5

23. (a) Prove that a necessary and sufficient condition that w = f(z) = u(x, y) + iv(x, y) be analytic in a region  $\mathbb{R}$  is that the Cauchy-Riemann equations  $u_x = v_y$ ,  $u_y = -v_x$  are satisfied in  $\mathbb{R}$ , where it is supposed that these partial derivatives are continuous in  $\mathbb{R}$ .

7

(b) If u and v are harmonic in a region  $\mathbb{R}$ , prove that

$$\left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}\right) + i\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$$

is analytic in R.

3

24. (a) Show that the function  $f(z) = \sqrt{|xy|}$  is not regular at the origin although the Cauchy-Riemann equations are satisfied at the origin.

## (6)

(b) If w = f(z) = u(x, y) + iv(x, y) is an analytic function of z = x + iy and

$$u-v=e^x(\cos y-\sin y)$$

find w in terms of z.

3

(c) Prove that the function

$$u(x, y) = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$$

satisfies Laplace equation and determine the corresponding analytic function.

3

25. (a) State and prove Cauchy's integral formula.

6

(b) Evaluate

$$\int_C \frac{dz}{z-a}$$

where C is any closed curve and z = a is

(i) outside C;

4

(ii) inside C.

**26.** (a) Using the definition of an integral as the limit of a sum, evaluate the following integrals:

(i) 
$$\int_L dz$$

(ii) 
$$\int_{L} |dz|$$

where L is any rectifiable arc joining the points  $z = \alpha$  and  $z = \beta$ .

4

22J**/122** 

(Continued)

#### 171

(b)

Evaluate 
$$\int_{L} \frac{dz}{z-a}$$

where L represents a circle |z-a|=r.

2

Prove that if f(z) is integrable along a (c) curve C having finite length L and if there exists a positive number M such that  $|f(z)| \le M$  on C, then

$$\left| \int_C f(z) \, dz \right| \le ML$$

4

(a) State and prove Liouville's theorem.

6

(b) Prove that every polynomial equation  $p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n = 0$ 

> where the degree  $n \ge 1$  and  $a_n \ne 0$ , has exactly n roots.

4

(a) State and prove the fundamental theorem of algebra.

Obtain the Taylor series (b) which represents the function

$$\frac{z^2-1}{(z+2)(z+3)}$$

in the region |z| < 2.

(8)

29. (a) Define different types of singularities with examples.

theorem.

(b) State and prove Cauchy's residue 5

- 30. Evaluate the following integrations by Cauchy's residue theorem (any two): 5×2=10
  - (i)  $\oint_C \frac{dz}{z^3+1}$ , where C is the circle defined by |z|=2
  - (ii)  $\int_0^{2\pi} \frac{d\theta}{a + b \sin \theta} \text{ if } a > |b|$
  - (iii)  $\oint_C \frac{e^2}{(z^2 + \pi^2)^2} dz$ , where C: |z| = 4