2021/TDC (CBCS)/EVEN/SEM/ MTMHCC-602T/127

TDC (CBCS) Even Semester Exam., September—2021

MATHEMATICS

(6th Semester)

Course No.: MTMHCC-602T

(Linear Algebra)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any ten questions from Q. Nos. 1 to 20: $2\times10=20$

1. Justify whether the set

$$W = \{(x, y, 2) \mid x, y \in \mathbb{R}\}\$$

is a subspace of $\mathbb{R}^3(\mathbb{R})$.

2. Define linear dependence and independence of vectors in a vector space.

(2)

- 3. Check if the set $S = \{(1, 0), (1, 2)\}$ is a basis of $\mathbb{R}^2(\mathbb{R})$.
- **4.** Give example to justify that union of two subspaces of a vector space need not be a subspace.
- 5. Define linear transformation from a vector space U to a vector space V.
- **6.** Find the null space of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T(x, y, z) = (x, x+y, x+y+z)$$

- 7. Find the matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (y, x) with respect to the standard ordered basis of $\mathbb{R}^2(\mathbb{R})$.
- **8.** Give example of a function from \mathbb{R}^2 to \mathbb{R}^2 that is not a linear transformation.
- **9.** Justify if $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (x, y, 0) is an isomorphism.
- **10.** If U and V are vector spaces and $T: U \rightarrow V$ is a one-one linear transformation, then what is the null space of T? Justify your answer.

(3)

- 11. Let $T: U \to V$ be an isomorphism and $S = \{u_1, u_2, \dots, u_n\}$ be a linearly independent set in U. Justify if T(S) is linearly independent in V.
- **12.** Let $T: U \to V$ be a linear transformation and $C \in \mathbb{R}$ be a scalar. Define the linear transformation CT and justify that it is a linear transformation.
- **13.** Define eigenvalue of a linear operator. Give an example.
- **14.** Let $T: V \to V$ be a linear operator. When is a subspace W of V said to be invariant under T?
- 15. If v is an eigenvector of $T: V \to V$ corresponding to the eigenvalue λ and $\alpha \in \mathbb{R}$ be a non-zero scalar, then show that αv is also an eigenvector of T corresponding to the eigenvalue λ .
- 16. Write the characteristic polynomial of

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

and find its eigenvalues.

17. Define an inner product space.

(4)

- **18.** State Cauchy-Schwartz inequality. Comment on the case when the equality holds.
- 19. If x, y are orthogonal to each other in an inner product space V, show that

$$||x+y||^2 = ||x||^2 + ||y||^2$$

20. Define orthogonal complement of a set in an inner product space.

SECTION-B

Answer any *five* questions from Q. Nos. **21** to **30**: $10 \times 5 = 50$

- 21. (a) Define a vector space over a field F. Show that a vector space has a unique additive identity. If $\overline{0}$ is the additive identity (or zero vector) in a vector space V(F), then show that $\alpha \cdot \overline{0} = \overline{0} \ \forall \alpha \in F$.
 - (b) Show that a non-empty subset W of a vector space V is a subspace of V if and only if it is closed under vector addition and scalar multiplication.
- 22. (a) Show that the intersection of any family of subspaces of a vector space is a subspace.

5

5

(5)

- (b) Let V be a finite dimensional vector space. Show that any two bases of V have the same number of elements.
- 5
- 23. (a) Let $T: U \to V$ be a linear transformation. Define null space of T and show that it is a subspace of U. 1+3=4
 - (b) State and prove the Rank-Nullity theorem for finite dimensional vector spaces. 1+5=6
- 24. (a) Consider the ordered bases

$$B = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$$

and $\overline{B} = \{(0, 0, 1), (1, 0, 0), (0, 1, 0)\}$

of $\mathbb{R}^3(\mathbb{R})$. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$T(x, y, z) = (x + y, y + z, z + x)$$

Find the matrix of T w.r.t. the ordered bases B and \overline{B} . Also, find the matrix of T w.r.t. \overline{B} and B. $2\frac{1}{2}+2\frac{1}{2}=5$

(b) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$T(x, y) = (x, x+y, y)$$

Find the range space and null space of T. Hence find the rank and nullity of T.

2+1+2=5

(6)

25. (a) Let V and W be any two vector spaces. Show that the set L(V, W) of all linear transformations from V to W is a vector space with the operations of addition (S+T) and scalar multiplication (αS) defined as

$$(S+T)(x) = S(x) + T(x)$$
$$(\alpha S)(x) = \alpha \cdot S(x)$$

for all $S, T \in L(V, W)$ and $\alpha \in \mathbb{R}$.

6

(b) Let V be a finite dimensional vector space. Show that a linear map $T: V \to V$ is an isomorphism if and only if $\ker T = \{0\}$, where $\ker T$ is the null space of T.

4

26. (a) Let U and V be vector spaces and $T: U \rightarrow V$ be a linear transformation. Then prove that

$$R(T) \cong U / N(T)$$

where R(T) and N(T) are the range space and null space of T respectively.

5

(b) Show that a linear transformation $T: V \to W$ is invertible iff it is bijective.

5

(7)

27. (a) Let $T: V \to V$ be a linear map and λ be an eigenvalue of T. Show that the set

$$E = \{ v \in V | T(v) = \lambda v \}$$

is a subspace of V. Does the space E consist entirely of eigenvectors of T w.r.t. the eigenvalue λ ? Justify. 3+1=4

(b) Verify Cayley-Hamilton theorem for the matrix

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Hence find A^{-1} .

4+2=6

- **28.** (a) Let $T: V \to W$ be a linear map. Show that the range space and null space of T are invariant under T. 2+2=4
 - (b) State and prove Cayley-Hamilton theorem for a square matrix. 1+5=6
- **29.** (a) Show that \mathbb{R}^n (\mathbb{R}) is an inner product space with inner product defined as for

$$x = (x_1, x_2, \dots, x_n)$$

 $y = (y_1, y_2, \dots, y_n)$

in \mathbb{R}^n , then

and

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

5

(8)

- (b) Let W be a subset of an inner product space V. Show that the orthogonal complement of W is a subspace of V.
- 5
- 30. (a) State and prove Bessel's inequality. 1+5=6
 - (b) Let V be a real inner product space. Then show that

$$||x+y||^2 - ||x-y||^2 = 4\langle x, y\rangle$$

for all $x, y \in V$.

4

+++